44 research outputs found

    On the singular limit problem for a discontinuous nonlocal conservation law

    Full text link
    In this contribution we study the singular limit problem of a nonlocal conservation law with a discontinuity in space. The specific choice of the nonlocal kernel involving the spatial discontinuity as well enables it to obtain a maximum principle for the nonlocal equation. The corresponding local equation can be transformed diffeomorphically to a classical scalar conservation law where the well-know Kru\v{z}kov theory can be applied. However, the nonlocal equation does not scale that way which is why the study of convergence is interesting to pursue. For exponential kernels in the nonlocal operator, we establish the converge to the corresponding local equation under mild conditions on the involved discontinuous velocity. We illustrate our results with some numerical examples.Comment: 25 pages, 2 figure

    A Proof of Kirchhoff's First Law for Hyperbolic Conservation Laws on Networks

    Full text link
    Networks are essential models in many applications such as information technology, chemistry, power systems, transportation, neuroscience, and social sciences. In light of such broad applicability, a general theory of dynamical systems on networks may capture shared concepts, and provide a setting for deriving abstract properties. To this end, we develop a calculus for networks modeled as abstract metric spaces and derive an analog of Kirchhoff's first law for hyperbolic conservation laws. In dynamical systems on networks, Kirchhoff's first law connects the study of abstract global objects, and that of a computationally-beneficial edgewise-Euclidean perspective by stating its equivalence. In particular, our results show that hyperbolic conservation laws on networks can be stated without explicit Kirchhoff-type boundary conditions.Comment: 20 pages, 6 figure

    Conservation laws with nonlocality in density and velocity and their applicability in traffic flow modelling

    Full text link
    In this work we present a nonlocal conservation law with a velocity depending on an integral term over a part of the space. The model class covers already existing models in literature, but it is also able to describe new dynamics mainly arising in the context of traffic flow modelling. We prove the existence and uniqueness of weak solutions of the nonlocal conservation law. Further, we provide a suitable numerical discretization and present numerical examples

    A study on minimum time regulation of a bounded congested road with upstream flow control

    Get PDF
    International audienceThis article is motivated by the practical problem of controlling traffic flow by imposing restrictive boundary conditions. For a one-dimensional congested road segment, we study the minimum time control problem of how to control the upstream vehicular flow appropriately to regulate the downstream traffic into a desired (constant) free flow state in minimum time. We consider the Initial-Boundary Value Problem (IBVP) for a scalar nonlinear conservation law, associated to the Lighthill-Whitham-Richards (LWR) Partial Differential Equation (PDE), where the left boundary condition, also treated as a valve for the traffic flow from the upstream, serves as a control. Besides, we set absorbing downstream boundary conditions. We prove first a comparison principle for the solutions of the considered IBVP, subject to comparable initial, left and right boundary data, which provides estimates on the minimal time required to control the system. Then we consider a (sub-) optimal control problem and we give numerical results based on Godunov scheme. The article serves as a starting point for studying time-optimal boundary control of the LWR model and for computing numerical results

    Composing MPC with LQR and Neural Network for Amortized Efficiency and Stable Control

    Full text link
    Model predictive control (MPC) is a powerful control method that handles dynamical systems with constraints. However, solving MPC iteratively in real time, i.e., implicit MPC, remains a computational challenge. To address this, common solutions include explicit MPC and function approximation. Both methods, whenever applicable, may improve the computational efficiency of the implicit MPC by several orders of magnitude. Nevertheless, explicit MPC often requires expensive pre-computation and does not easily apply to higher-dimensional problems. Meanwhile, function approximation, although scales better with dimension, still requires pre-training on a large dataset and generally cannot guarantee to find an accurate surrogate policy, the failure of which often leads to closed-loop instability. To address these issues, we propose a triple-mode hybrid control scheme, named Memory-Augmented MPC, by combining a linear quadratic regulator, a neural network, and an MPC. From its standard form, we further derive two variants of such hybrid control scheme: one customized for chaotic systems and the other for slow systems. The proposed scheme does not require pre-computation and can improve the amortized running time of the composed MPC with a well-trained neural network. In addition, the scheme maintains closed-loop stability with any neural networks of proper input and output dimensions, alleviating the need for certifying optimality of the neural network in safety-critical applications.Comment: 13 pages, 10 figures, 2 table

    A study on minimum time regulation of a bounded congested road with upstream flow control

    Get PDF
    International audienceThis article is motivated by the practical problem of controlling traffic flow by imposing restrictive boundary conditions. For a one-dimensional congested road segment, we study the minimum time control problem of how to control the upstream vehicular flow appropriately to regulate the downstream traffic into a desired (constant) free flow state in minimum time. We consider the Initial-Boundary Value Problem (IBVP) for a scalar nonlinear conservation law, associated to the Lighthill-Whitham-Richards (LWR) Partial Differential Equation (PDE), where the left boundary condition, also treated as a valve for the traffic flow from the upstream, serves as a control. Besides, we set absorbing downstream boundary conditions. We prove first a comparison principle for the solutions of the considered IBVP, subject to comparable initial, left and right boundary data, which provides estimates on the minimal time required to control the system. Then we consider a (sub-) optimal control problem and we give numerical results based on Godunov scheme. The article serves as a starting point for studying time-optimal boundary control of the LWR model and for computing numerical results

    A macroscopic traffic flow model with finite buffers on networks: Well-posedness by means of Hamilton-Jacobi equations

    Get PDF
    International audienceWe introduce a model dealing with conservation laws on networks and coupled boundary conditions at the junctions. In particular, we introduce buffers of fixed arbitrary size and time dependent split ratios at the junctions , which represent how traffic is routed through the network, while guaranteeing spill-back phenomena at nodes. Having defined the dynamics at the level of conservation laws, we lift it up to the Hamilton-Jacobi (H-J) formulation and write boundary datum of incoming and outgoing junctions as functions of the queue sizes and vice-versa. The Hamilton-Jacobi formulation provides the necessary regularity estimates to derive a fixed-point problem in a proper Banach space setting, which is used to prove well-posedness of the model. Finally, we detail how to apply our framework to a non-trivial road network, with several intersections and finite-length links

    Oleı̆nik-type estimates for nonlocal conservation laws and applications to the nonlocal-to-local limit

    Get PDF
    We consider a class of nonlocal conservation laws with exponential kernel and prove that quantities involving the nonlocal term W:=1(,0]()exp()ρW:=\mathbb{1}_{(-\infty,0]}(\cdot)\exp(\cdot) \ast \rho satisfy an Oleı̆nik-type entropy condition. More precisely, under different sets of assumptions on the velocity function VV, we prove that WW satisfies a one-sided Lipschitz condition and that V(W)WxWV'(W) W \partial_x W satisfies a one-sided bound, respectively. As a byproduct, we deduce that, as the exponential kernel is rescaled to converge to a Dirac delta distribution, the weak solution of the nonlocal problem converges to the unique entropy-admissible solution of the corresponding local conservation law, under the only assumption that the initial datum is essentially bounded and not necessarily of bounded variation

    Limitations and Improvements of the Intelligent Driver Model (IDM)

    Full text link
    This contribution analyzes the widely used and well-known "intelligent driver model" (briefly IDM), which is a second order car-following model governed by a system of ordinary differential equations. Although this model was intensively studied in recent years for properly capturing traffic phenomena and driver braking behavior, a rigorous study of the well-posedness of solutions has, to our knowledge, never been performed. First it is shown that, for a specific class of initial data, the vehicles' velocities become negative or even diverge to -\infty in finite time, both undesirable properties for a car-following model. Various modifications of the IDM are then proposed in order to avoid such ill-posedness. The theoretical remediation of the model, rather than post facto by ad-hoc modification of code implementations, allows a more sound numerical implementation and preservation of the model features. Indeed, to avoid inconsistencies and ensure dynamics close to the one of the original model, one may need to inspect and clean large input data, which may result practically impossible for large-scale simulations. Although well-posedness issues occur only for specific initial data, this may happen frequently when different traffic scenarios are analyzed, and especially in presence of lane-changing, on ramps and other network components as it is the case for most commonly used micro-simulators. On the other side, it is shown that well-posedness can be guaranteed by straight-forward improvements, such as those obtained by slightly changing the acceleration to prevent the velocity from becoming negative.Comment: 29 pages, 23 Figure
    corecore